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Rigorous determination of kinetic 
parameters from DTA measurements 
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A rigorous analysis of the application of the DTA technique to the solid-state reaction 
formally described by the Avrami-Erofe'ev equation leads to a quantitative relationship 
among the experimental parameters obtainable from thermograms. A non-linear regres- 
sion procedure allows the simultaneous evaluation in a very simple way of the activation 
energy, Eact, of the reaction order n and of the pre-exponential Arrhenius factor, A. The 
knowledge of these quantities leads to considerations about the reaction mechanism and 
to the complete prevision of the behaviour of the transformation. Isothermal literature 
data totally agree with our experimental results. 

1. Introduction 
The reaction rate of a solid-state transformation 
is expressed in a general way by: 

d~ 
- k f ( ~ ) ,  (1)  

dt 
where c~ is the fractional reaction, k the reaction- 
rate coefficient and t the time. Equation 1, if the 
analytical form of the f (a )  function is known, can 
be integrated as follows: 

io a - kt. 
d~ 

g(~) =. f(~) 

It has been demonstrated that very large classes 
of solid-state reactions (decompositions, phase 
transformations, crystallizations) can be com- 
pletely described by an "integral" rate equation, 
which is the so-called Avrami-Erofe'ev relation- 
ship [1-4]:  

- - l n ( 1 - - o  0 = (kt) ~. (2) 

In general, k depends on the absolute temperature 
in accordance with the Arrhenius equation: 

(_  ~ac' 1 k = Aexp  \ R T ] '  (3) 

where A is the Arrhenius pre-exponential factor. 

It is clear that a complete characterization of a 
generic solid-state reaction and then obviously 
also of a reaction following the Avrami-Erofe'ev 
equation is reached only if the numerical values 
of Eaet, n and A are known. 

In order to determine these kinetic parameters, 
the "isothermal analysis" is surely the most 
common procedure. In this perspective, it is 
necessary indeed to measure in some way (i.e. 
by means of X-ray diffraction, optical microscopy, 
isothermal differential calorimetry, etc.) many 
values of a as a function of t at a selected constant 
temperature. Then, it is possible to fit the Avrami- 
Erofe'ev equation at the fixed temperature and 
determine the values of k and n. By iterating this 
procedure, it is possible to obtain several values of 
k at different temperatures. An Arrhenius plot 
then allows the evaluation of A and Eaet. Although 
very precise and accurate, this method needs very 
long and complicated experimental measurements 
and therefore it is not completely suitable. 

On the other hand, the non-isothermal or 
dynamic methods, such as DTA, non-isothermal 
DSC, TG, supply a complete overview of the 
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reaction trend by scanning the whole temperature 
range of interest in a continuous way. Neverthless, 
the existing procedures of analysis of the experi- 
mental data (in particular those obtained from 
DTA) are all affected by some kind of serious 
approximations, or are unable to supply simul. 
taneously all the kinetic parameters. 

In this perspective, many papers since 1956 
have appeared, concerning DTA kinetic analyses 
of the solid-state reactions. The first work on the 
evaluation of kinetic parameters was published 
by Kissinger [5, 6] and was based on a model 
different from the Avrami-Erofe'ev equation. 
This method was proved invalid on theoretical 
and experimental grounds in a later paper by 
Reed et al. [7], because of its incorrect assump- 
tion that the maximum reaction rate is reached 
exactly at the top of DTA peaks. In 1966, Piloyan 
et al. [8] enunciated the so-called "Piloyan's 
approximation", stating that in the initial part 
of the DTA peak the rise of  temperature has a 
much larger influence on the temperature dif- 
ferential, AT, than on the fractional reaction, a. 
It is evident that this approximation may lead to 
many simplifications in the mathematical treat- 
ment of the DTA theory. On Piloyan's work were 
substantially based the kinetic methods of Sest~k 
[9] and Marotta and co-workers [10, 11] which, 
on the basis of the Avrami-Erofe'ev equation, 
allowed the determination of Eae t and n. Never- 
theless, their procedure of application of the 
Piloyan's approximation was criticized by Criado 
and Ortega [12]. An approximate and so not 
rigorous numerical analysis of the problem was 
carried out by Colmenero et al. [13]. Moreover, 
the treatments of Matusita and Sakka [14] and 
Doulah [15, 16], which are not based on the 
Avrami-Erofe'ev model, are unable to deter- 
mine all the kinetic parameters in question. 

In order to get over this impasse, the argument 
of this paper concerns the development of a new 
method of analysis of DTA data, which does not 
present the above restrictions, because of its 
rigorous derivation. Other important features of 
the present method are the great simplicity and 
the requirement of a small number of experi- 
mental determinations. 

2. Theory 
In a previous paper, Borchardt and Daniels [17] 
derived a theory concerning the application of the 
DTA technique to the study of the kinetics of 
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reactions in solution. Their work was based on a 
series of assumptions perfectly fulfilled by the 
reactions occurring in the liquid state, but, by 
choosing the appropriate experimental conditions, 
we may also use it in the solid phase reactions. The 
more problematic assumptions for the application 
of the theory stated by Borchardt and Daniels to 
solids were: 

(a) the temperature in the DTA cells must be 
uniform. This is not generally true when the cells 
are filled with solid materials, but the inhomo- 
geneities in temperature can, in practice, be 
neglected if the volume of the samples is very 
small. So, the use of microcells permits the ful- 
fdment of this assumption for solid-state reactions; 

(b) the heat capacities and the heat-transfer 
coefficient of the sample and of the reference 
must be equal, i.e. Cp (sample)= Cp (reference) 
and K (sample)= K (reference). In this case, an 
extended dilution of the sample with the inert 
reference material and the application of the same 
filling procedure for the two cells leads to very 
small and negligible differences in the heat 
capacities and in the heat-transfer coefficients of 
the reference and sample. 

So, when these two experimental conditions are 
satisfied, the general Borchardt and Daniels' 
theory is applicable to the reactions in the solid 
state. In particular, the following equation is still 
valid: 

dN - N~ (cp dAT + KAT) (4) 
dt KA dt ' 

where N is the number of the reacting moles, 
No the initial number of moles, Cp the heat 
capacity of both sample and reference, K the 
heat-transfer coefficient of the two specimens, 
AT the temperature difference between them 
and A = foATdt is the area under the DTA peak. 

On the basis of the previous assumptions we 
obtain: 

1 dN da 

No dt d t '  
SO 

da 1 ( __dAT +KAT). (5) 
dt - KA Cp dt 

If, in the DTA analysis, the heating rate, h, is 
constant, we laave 

T = ht+ To, 

when To is the starting (room) temperature. 



Hence, dt = dT[h and by substituting Equation 
5 we obtain: 

da _ KA1 [dAT T) [---~f- Cp h + KA__. (6) 
dt 

If the DTA pattern is obtained on an X-Yrecorder,  
we have A T =  AT(T). At the maximum of a 
positive or negative peak, according to exothermic 
or endothermic reactions, the following condition 
is fulfilled because of the obvious continuousness 
of the AT = AT(T) function: 

dATt = 0 .  
kdT  ]max 

Equation 6 is then reduced to: 

m a x  = h ( A T ) m a x  

o r  

(AT)max = A \dt] max" (7) 

It is crucial to underline that this relationship of 
direct proportionality is strictly valid only at the 
peak maximum. Equation 7 then does not express 

x ~-- i -+nk  n. (T--To) n- . 

We can set S = T--  To,/3 = Eact/R and then: 

/ ksinr n 
d__aadt = exp t--if-] Ink S t-~) T--- f 

[ 1  \n-I  _ ] 

At the peak maximum, Equation 7 is valid and 
SO: 

(AT)max = A exp - Ink'S~/--/  T--- ~ L \hi 
[ 1 \  n-1  ] 

n __ n -1  +nk [h ) Sm ] ,  (9) 

where Tm = T at the maximum, and Sm = S at 
the maximum. 

It is now possible to differentiate AT with 
respect to T and evaluate dAT/dT. The maximum 
condition supplies in this way an equation, in 
which the unknown quantity k can be obtained. 
Hence: 

2 4 2 3 2 2 ~ | l / n  h [(nil /Tm)S~a -- (2~/T~)_S~+_ (2nfi/T~)S__ m + n -- 1 
k = -~m [ (n/32/T4m) S~ + (2nf3/T2m) Sm+ n J " 

(10) 

that at the peak maximum the reaction rate is 
maximum, and so the present treatment is not 
submitted to Reed's critics. 

Now we suppose that the reaction we are 
examining is described by the Avrami-Erofe'ev 
Equation 2. We can express: 

a = 1-- exp [-- (kt)n]. (8) 

If the reaction in question follows an Arrhenius- 
type trend, during the DTA run with constant 
heating rate, the rate coefficient, k, depends on 
time. In fact it may be written: 

k = Aexp  -+ R(ht+To " 

From Equation 8, it is now possible to differentiate 
with respect to: 

d-~a = exp [-(kt)n] [ nkn Eaethtn ] 
dt R(ht + To) 2 + nk"tn- a 

= exp h - 

By considering the magnitude orders of the 
various terms (Tm and S m ~ 10 2,/3 ~ 10 4) it is 
obvious that n and 1 are surely negligible. Equation 
10 is easily transformed in 

~l/r/ hi1 =mTm/ 
k = ~ n~Sm +~-nT2m] " (11) 

On the basis of Equation 2 we reach the final 
relationship 

h = AS m exp -- /3 1 2SmTm 
n/3S m + 2nT~ 

(12) 

This complex equation connects the kinetic 
parameters n, /3, A with the experimental quan- 
tities h, Tin, Sin. It is now possible to record 
several DTA patterns at different constant heating 
rates and the analysis of the peak leads to the 
knowledge of Tm and Sm for each pattern. Now, 
by means of a non-linear regression algorithm, 
the fitting of Equation 12 allows the simultaneous 
determination of all the kinetic parameters. 
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3. Results 
In order to check the correctness of the method 
described above, we have compared isothermal 
data for a reaction which is known to follow the 
Avrami-Erofe'ev equation, i.e. the crystallization 
of the Li20" 2SIO2 glass, with the kinetic param- 
eters calculated with the best fit of  Equation 12. 
On these grounds, 15 g reagent grade Li2CO3 and 
SiO2 in a 1:2 molecular ratio were melted at 
1500~ for 2 h in an electrically heated muffle 
furnace under air atmosphere. The melt was 
quenched on a stainless steel plate and gave rise 
to a very transparent glass. The sample was then 
very carefully ground in an agate mortar. The 
resulting DTA powder patterns were then recorded, 
using a Linseis L62 thermoanalyser equipped with 
very small crucibles and with crystalline A1203 
as reference. The glassy sample was each time 
diluted with A1203 and the two crucibles were 
filled in the same way. Five analyses were carried 
out and the different heating rates are reported 
in Table I. Each pattern exhibited an intense 
exothermic peak, always preceded by the charac- 
teristic "annealing dip" representing the glass 
transition. The temperatures of the peak's maxima 
are also summarized in Table I. 

The fitting of Equation 12 was carried out by 
means of a computer program (BARD algorithm) 
based on the Gauss-Newton non-linear regression 
method [18]. The program needs a set of  initial 
guesses for the parameters. In order to obtain a 
simple derivation of the initial set of approximate 
parameters, it is worth noting that Equation 12 
can be written as 

= --S~ exp 1 n[3Sm + 2nT~J" 
(13) 

The values of Sin, Tin, n and fl make the term 
2SmTm/(nflSm+ 2nT 2) always negligible with 
respect to 1. In this way, Equation 13 becomes: 

A = S ~ -  

TABLE I ExperimentN parameters of the DTA p~terns 

h (Kmin -1) Tm(K) Sm(K) 

1 790.65 498.5 
2 810.65 518.5 
5 826.15 533.0 

10 843.65 550.5 
20 861.15 568.0 
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By taking logarithms we have 

ha rm 

Now, if we plot In (Sin~h) against 1~Tin, the slope 
and the intercept of  the least squares calculated 
straight line allow a good approximate evaluation 
of fl and A, which can supply an initial set of  
guesses. Because of the narrow range of variability 
of n which has a physical meaning only when 
included between 0 and 4, it is possible to choose 
in any case n = 2 as a good initial guess. 

In our case, the guesses were fixed at A = 1 x 
10 '1 sec- ' ,  t3 = 30000 K and n = 2; in fact this 
choice is not critical, because different guesses 
can only modify the number of  iterations required 
for the achievement of the best fit solution, but 
not the quality of the fitting itself. 

The results of the calculations are: A = 6.64 x 
1011sec-1; f l = 2 7 8 8 0 K ,  i.e. E a c t = 2 3 1 . 6 8 k J  
mol-1; n = 1.77. 

The most commonly accepted values of the 
kinetic parameters for the crystallization of the 
Li20" 2SiOz glass are those reported by Freiman 
and Hence [19] which concern the overall process 
of crystallization of Li2Si2Os and which can be 
summarized as: Eae t = 234kj  mol- ' ;  n = 1.7. It is 
known that this value of n represents a crystal- 
lization with a rod-growth occurring with a con- 
stant nucleation rate. Unfortunately, no value is 
available for the Arrhenius pre-exponential factor 
of the overall process. A comparison of the two 
sets of results shows the total reliability of the 
proposed method of evaluation, which in addition 
proves much simpler than the isothermal ones. 
Moreover, the present check confirms the crystal- 
lization mechanism proposed by Freiman and 
Hench. 

4. Conclusions 
The validity has been shown, on the basis of  
rigorous theoretical considerations, of a quan- 
titative relationship concerning all the kinetic 
parameters which are necessary for the com- 
plete characterization of a reaction following the 
Avrami-Erofe'ev equation. Furthermore, an 
experimental check of our method, based on the 
comparison between the isothermal data and the 
present DTA data for the crystallization of the 
Li20" 2SIO2 glass has proved completely success- 
ful. The complete and accurate knowledge of the 
fundamental quantities ruling a solid-state reaction 



leads e i t he r  to  basic  cons ide ra t ions  c o n c e r n i n g  

the  r eac t i on  m e c h a n i s m ,  or  to  a de ta i l ed  pre- 

vision o f  the  r e a c t i o n  t r e n d ,  w i t h  i m p o r t a n t  t ech-  

nological  repercuss ions ,  i.e. in  the  f ield o f  glass 

ceramics .  
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